The Duckietown path to robotics: an interview with Prof. Francesco Maurelli

Jacobs University, Bremen, June 1, 2022: Francesco Maurelli, professor at the Jacobs University of Bremen, talks about how Duckietown impacted his work and his academic career.

The Duckietown path to robotics: an interview with Prof. Francesco Maurelli

Francesco Maurelli, professor at the Jacobs University of Bremen, Germany, shares in the interview below his interaction with Duckietown.

88268532_10157957934049144_639702359030628352_n

Let’s start by simply asking your name, who you are, where you work, what you do for a living.

Hi, Federico. Hi, everyone. I am Francesco Maurelli and I’m a professor in robotics at Jacobs University in Bremen.

When was the first time you came across Duckietown in your life? Describe your first contact with Duckietown for us.

Well, that was in my team. I was there as a Marie Curie scholar from Europe. I met Andrea and Liam, and learned about this new initiative. I was interested so I spoke in depth with them and with the students who took the course. I then looked at the videos and thought it was a great setup because it brings robotics closer to the students in a fun way by reducing the access barrier. Many people think that robotics is very hard, which is true. I’m not saying it’s easy, but on the other hand, there are easier paths to access robotics. Additionally the element of gamification makes people happy when they work with Duckietown. I found that students want to get involved regardless of the course work, they just like the concept.

Thank you. Is there a specific thing that maybe you did using Duckietown in your life, a project, a program or some sort of ecosystem? 

We have had three different initiatives based on Duckietown.

The first one, called Jacobs Robotics, was an extracurricular activity for students. I would meet interested students outside of class time, it wasn’t linked to academic credit. It was just for fun and for learning. Among the different robotics platforms, we had a group working on Duckietown. This was the initial step in using Duckietown at our university.

Then the second step was to embed Duckietown in the official curriculum. We have a bachelor’s program in robotics and intelligence systems, and I’m its program manager. We were rewriting and updating some parts of it as we underwent a new wave of accreditation. So I took the opportunity to redesign some aspects of the program and in this process decided to embed Duckietown at Bachelor level. I’ve introduced it at Ross Lab in simulation in the fall of the second year, in the third semester, and then we have a robotics project based on Duckietown in the spring, ofthe second year, (i.e. in the fourth semester). That means that when students start their third year, they already have an understanding of ROS, they have knowledge of Duckietown and they work with real systems. This means that they can do a much better thesis, even if it’s a Bachelor level, we can improve the average level. When I joined the University, the first month of the thesis was lost on students learning to use Ross, for example. Now we are a step ahead.

The third part is the research application. It’s not only a matter of having fun with students, or delivering courses to students, but also doing my own research. I have a project which is funded by the German Research Foundation, DFG, it is in collaboration with the psychology Department. The psychologists want to look at the characteristics that humans assign to entities to identify the “self”. We as roboticists are going to develop and program different robotic behaviors, which the behavioral scientist from the psychology department will analyze. In a nutshell, we will prepare different videos illustrating the same actions performed in different ways. A very basic example would be moving in a city at constant speed or moving in a city at variable speeds. Our partners in the psychology department will show these videos to the study participants and collect user feedback through questionnaires to determine which behaviors they think are more alike a self determined behavior.

This is extremely interesting. Thank you very much. Have you ever heard about the MOOC course?

Yes, actually. In fact I suggested to our students to look at the MOOC. Of course, it is set up in a different way with respect to our course, but it can be and it has been a useful tool for students to review some of the material through a different viewpoint. So it’s definitely a valuable learning material which is available to the community.

“It’s not only a matter of having fun with students, or delivering courses to students, but also doing my own research.”

Francesco Maurelli

Okay. My last question is would you suggest Duckietown to other people, colleagues or your students? And why?

Absolutely. I see that from my own experience, students like it and they learn a lot about robotics. All the different concepts ranging from control to localization to computer vision can be applied in Duckietown. So in our projects, in our robotics projects, different groups of students develop different ideas. And I see that they are enjoying themselves and they are learning. So it’s definitely a plus.

Thank you very much.

Learn more about Duckietown

The Duckietown platform offers robotics and AI learning experiences.

Duckietown is modular, customizable and state-of-the-art. It is designed to teach, learn, and do research: from exploring the fundamentals of computer science and automation to pushing the boundaries of knowledge.

Tell us your story

Are you an instructor, learner, researcher or professional with a Duckietown story to tell? Reach out to us!


When rubber duckies meet the road: an interview with Prof. Liam Paull

UdM, Montréal, May 5, 2022: Liam Paull, professor at the University of Montreal and one of Duckietown’s founders, talks about his role and experiences with Duckietown.

When rubber duckies meet the road: an interview with Prof. Liam Paull

Liam Paull, professor at the University of Montreal in Quebec, and one of the very founders of Duckietown, shares below his unique perspective about Duckietown’s journey and its origin.

LiamPaull-640x427

Good morning, Liam.

Hello.

Thank you very much for accepting to have this little chat.
Could you tell us something about you?

Sure. So my name is Liam Paull. I’m a professor at the University of Montreal in Quebec, Canada. I teach in the computer science Department, And I do research on robotics.

Ok and when was the first time you “came across” Duckietown?

Well, I’m actually one of the creators of Duckietown, So I didn’t come across it as much! The origin story of Duckietown is kind of interesting, But I probably forgot some of the details. It must have been about 2015. And myself, Andrea Censi, and a few others were interested to get more teaching experience. We were all postdocs or research scientists at MIT at the time. I guess we started brainstorming ideas, and then roughly around that time, I switched positions at MIT. I was previously a postdoc in John Leonard’s group working on marine robotics, and then I switched to become part of Danielle Lerous lab and lead an autonomous driving project. And so somehow the stars just aligned. That the right topic for this class that we would teach would be autonomous driving. Yeah, the Ducky thing is kind of a separate thing. Actually, Andrea had started this other thing that was making videos for people to publicize their work at a top robotics conference Called the international conference robotics automation, and somehow had the idea that every single video that was submitted should have a rubber Ducky in it. And this was for scale or something.
There was some kind of reason behind it I sort of forget. But anyway, so the branding kind of caught fire.
When we were building the class, we agreed the one constraint was that there should be duckies involved somehow, and the rest is kind of history!

What’s your relationship with Duckietown today? Like, do you use it in particular for some activities, your daily work or some project? Yeah, for sure. I guess I use it in a number of ways. Maybe the first way is that I teach a class every fall called autonomous vehicles, Where the Duckietown platform is the platform that we use for the experiments and labs in the class. So just like the original class, Every student gets a robot that they assemble, and then we learn about computer vision and autonomous driving and all the good stuff related to robotics. But I also use the platform for some amount of research. Also in my group, I believe that there’s a lot of interesting research directions that come from a kind of standardized, small scale, accessible autonomous driving platform like this. Recently, most of the work that we’ve been doing in terms of research has been about training agents in simulation and then deploying them in the real world. So this isa nice setup for that because we have a simulator that’s very easy, fast and lightweight to train in, and then we have the environment that’s also really accessible. So, yeah, so we’ve been doing some research on that front.
So would you recommend Duckieown to colleagues or students of yours? And if yes, why. Of course. I think that’s what’s nice. Going back to the original motivation behind building Duckietowng and some of the tenets: thee guiding principle for us was this idea that to learn robotics, you have to get your hands on a robot. And we are also very adamant that it should be that every student should have their own robot. With teams of robots or going into the lab and only being able to use the robot at certain hours. It’s something funny.
You don’t develop the same kind of personal relationship. It sounds weird, but it’s true. Like when you have your own thing that you’re working with every day, you have some kind of bond with that thing, and you develop some kind of love or hate or whatever the case may be depending on how things are going on that particular day. So I think that with this set up, we have a platform where we’ve scaled things down and made things cost effective, to be able to do that. We built an engaging, experimental platform where it’s totally, I think, reasonable for most University budgets to be able to get their hands on the hardware.

"I believe that there's a lot of interesting research directions that come from a standardized, small scale, accessible autonomous driving platform like Duckietown."

Liam Paull
The other big piece is the actual teaching materials that we’ve developed. And I think that we have some good stuff. It could be better. Some stuff could be better, but that’s where we also need the community to come in. I mean, if we have this standardized platform and lots of people start using it and building educational experiences around the platform, then the entire thing just starts to get better and better for everybody. And it just grows into a very nice thing where you can also pick and choose the pieces that you want to include for your particular class, and you can customize the experience of what your class is going to look like using all of the resources that are out there. Also, the other part that I’ve really tried to cultivate, this is sort of a new thing. When we ran the first class at MIT, it was really an isolated thing. But in the subsequent iterations of the class, like myself and others have been in different places around the world, whether it’s Matt Walter at TTIC or Jacopo and Andrea at ETH. So we tried to turn the class into this kind of global experience, where you feel like you’re part of something that’s bigger than just the class that you’re taking at the specific University. And I think students really like that. We’ve experimented with different models where people do projects with other students from other universities or even just feeling part of the global community. I think it’s a very fun and engaging. Students are so connected these days. They’re so plugged in. They like this aspect of feeling like there’s a bit more of a broad social aspect, too. So I think these are some of the elements that this platform project experience brings to the table that I don’t see replicated and too many other setups.

Anything else you would like to add about Duckietown and it’s uses?

I didn’t mention specifically about the MOOC. One of the core missions of this project from the onset has been that it’s accessible. Both in terms of hardware but also in terms of software. And part of what that means to us Is that no matter where you are, no matter who you are, you should be able to get the hardware and you should be able to use the educational resources to learn. And part of the motivation for that Was that we saw that while we were at MIT. When you’re at a place like MIT you are extremely privileged and if you come from a background of less privilege, you see the discrepancy. In some sense, it’s palpable. Part of that, I guess, was that we don’t even necessarily want it to be a prerequisite that students should be enrolled in universities in order to be able to address the platform. So we built this massive online open source course through edx, which is also an open source provider Where people can, regardless of their background or regardless of their situation, they can sign up for this thing, and it’s a creative set of materials that also have exercises to interact with the robot that anybody can do, Regardless of whether they’re at a University or not.
I think this is the next step for us in making the platform accessible to all, and we’re going to continue to run iterations of this thing. But I also think that this is an exciting objective that very much fits in the mission of what we’re trying to do with this project.

This was great thank you for your time!

Awesome. Great. Thank you for your time. Bye.

Learn more about Duckietown

The Duckietown platform offers robotics and AI learning experiences.

Duckietown is modular, customizable and state-of-the-art. It is designed to teach, learn, and do research: from exploring the fundamentals of computer science and automation to pushing the boundaries of knowledge.

Tell us your story

Are you an instructor, learner, researcher or professional with a Duckietown story to tell? Reach out to us!

AI Driving Olympics 2021: Urban League Finalists

AI Driving Olympics 2021 - Urban League Finalists

This year’s embodied urban league challenges were lane following (LF), lane following with vehicles (LFV) and lane following with intersections, (LFI). To account for differences between the real world and simulation, this edition finalists can make one additional submission to the real challenges to improve their scores. Finalists are the authors of AI-DO 2021 submissions in the top 5 ranks for each challenge. This year’s finalists are:

LF

  • András Kalapos
  • Bence Haromi
  • Sampsa Ranta
  • ETU-JBR Team
  • Giulio Vaccari

LFV

  • Sampsa Ranta
  • Adrian Brucker
  • Andras Beres
  • David Bardos

LFI

  • András Kalapos
  • Sampsa Ranta
  • Adrian Brucker
  • Andras Beres

The deadline for submitting the “final” submissions is Dec. 9th, 2 pm CET. All submissions received after this time will count towards the next edition of AI-DO.

Don’t forget to join the #aido channel on the Duckietown Slack for updates!

Congratulations to all the participants, and best of luck to the finalists!

Amazon Web Services (AWS)

EdTech awards 2021: Duckietown finalist in 3 categories!

Duckietown reaches the finals in the EdTech Awards 2021

The EdTech awards are the largest and most competitive recognition program in all of education technology.

The competition, led by the EdTech digest, recognizes the biggest names in edtech – and those who soon will be, by identifying all over the world the products, services and people that bet promote education through the use of technology, for the benefit of learners.

The 2021 edition has brought a big surprise to Duckietown, as it was nominated as a finalist in 3 different categories:

  • Cool Tool Award: as robotics (for learning, education) solution;

  • Cool Tool Award: as higher education solution;

  • Trendsetter Award: as a product or service setting a trend in education technologies.

Although a final is just a starting point, we are proud of the hard work done by the team in this particularly difficult year of pandemic and lockdowns, and grateful to you all for the incredible support, constructive feedback and contributions!

To the future, and beyond!

(hidden) Want to learn more about us?

Congratulations to the winners of the second edition of the AI Driving Olympics!

Team JetBrains came out on top on all 3 challenges

It was a busy (and squeaky) few days at the International Conference on Robotics and Automation in Montreal for the organizers and competitors of the AI Driving Olympics. 

The finals were kicked off by a semifinals round, where we the top 5 submissions from the Lane Following in Simulation leaderboard. The finalists (JBRRussia and MYF) moved forward to the more complicated challenges of Lane Following with Vehicles and Lane Following with Vehicles and Intersections. 

Results from the AI-DO2 Finals event on May 22, 2019 at ICRA

If you couldn’t make it to the event and missed the live stream on Facebook, here’s a short video of the first run of the JetBrains Lane Following submission.

Thanks to everyone that competed, dropped in to say hello, and cheered on the finalists by sending the song of the Duckie down the corridors of the Palais des Congrès. 

A few pictures from the event

Don't know much about the AI Driving Olympics?

It is an accessible and reproducible autonomous car competition designed with straightforward standardized hardware, software and interfaces.

Get Started

Step 1: Build and test your agent with our available templates and baselines

Step 2: Submit to a challenge

Check out the leaderboard

View your submission in simulation

Step 3: Run your submission on a robot

in a Robotarium

AI-DO 2 Validation and Testing Registration

We are in the final countdown to AI-DO 2 at ICRA!

Now is the time to let us know if you will be using the validation and testing facilities at the Duckietown competition ground. Please register below!

AI-DO technical updates

Here are some technical updates regarding the competition. Thanks for all the bug reports via Github and Slack!

Changes to platform model in simulations

We have changed the purely kinematic model in the simulations with one that is more similar to the real robots obtained by system identification. You can find the model here. Properties:
  • The inputs to the model are the two PWM signals to the wheels, left and right. (not [speed, omega] like last year)
  • The maximum velocity is ~2 m/s. The rise time is about 1 second.
  • There is a simulated delay of 100 ms.
We will slightly perturb the parameters of the model in the future to account for robot-robot variations, but this is not implemented yet. All the submissions have been re-evaluated. You can see the difference between the two models
purely kinematic platform model more realistic platform model
  The new model is much more smooth. Overall we expect that the new model makes the competition easier both in simulation, and obviously, in the transfer.

Infrastructure changes

  • We have update the Duckietown Shell and commands several times to fix a few reported bugs.
  • We have started with provisioning AWS cloud evaluators. There are still sporadic problems. You should know that if your job fails with the host-error code, the system thinks it is a problem of the evaluator and it will try on another evaluator.

Open issues

  • Some timeouts are a bit tight. Currently we allow 20 minutes like for NeurIPS, but this year we have much more realistic simulation and better visualization code that  take more time. If your submission fails after 20 minutes of evaluation, this is the reason.
  • We are still working on the glue code for running the submissions on the real robots. Should be a couple of days away.
  • Some of the changes to the models/protocol above are not in the docs yet.