Learning Autonomy in practice with Vincenzo Polizzi

ETHZ, Zurich, March 11, 2022: How Vincenzo discovered his true professional passion as a student using Duckietown.  

Learning Autonomy in practice with Vincenzo Polizzi

Vincenzo Polizzi studied robotics, systems and control at the Swiss Federal institute of Technology (ETH Zurich). Vincenzo shares below his experience with Duckietown. Starting off as a student, becoming a Teaching Assistant and onto how he uses Duckietown to power his own research as he moves from academia to industry.

IMG_20191216_211129

Could you tell us something about yourself?

I’m Vincenzo Polizzi , I studied automation engineering at the Politecnico di Milano, and I currently study robotics, systems and control at the Swiss Federal Institute of Technology (ETH Zurich).

You use Duckietown. Could you tell us when you first came into contact with the project, and what attracted you to Duckietown?

Sure! I learned about Duckietown my first year during a master’s program at ETH, where there was a course called: “Autonomous mobility on demand, from car to fleet” where I saw these cars, these robots. And I asked myself “what is this thing?”. It seemed very interesting. The first thing that struck me was that it did not look theoretical, but clearly practical.

“It captures you with simplicity and then you stay for the complexity.”

Vincenzo Polizzi

So the idea of a practical aspect interested you?

Yes, during the presentation, it was clear that the course was based on projects the student had to carry out, where one could practice what they had learned theoretically in other classes.
I come from a scientific high school, and I studied automation engineering in Milan. In both my study experiences, I was used to learning concepts theoretically. For example, in the control system for a plant you design on paper in university, you don’t really face the complexity of implementing it on a real object.

I have to say that I have always been very passionate about robotics and informatics. In fact, even in high school, I was building these little robots,I participated in the robotics competition Rome Cup held by Fondazione Mondo Digitale, and there were these robots that were similar in shape to those of Duckietown, but where the scientific content was completely different. So in Duckietown, I saw something similar to what I was doing in my free time. I wanted to see exactly how it was inside, and there I discovered a whole other world that is obviously much more scientific than what a normal high school student could imagine by themself. However, initially I was curious to see a course where one can practice all the knowledge they have gradually acquired. It is not just about writing an equation and finding a solution but making things work.

What is your relationship with Duckietown, how long have you been using it? How do you interact with the Duckietown ecosystem? How do you use it, what do you do with it?

These are interesting questions because I started as a student and then managed to see what’s behind Duckietown. I was attending the course Duckietown held at ETH in 2019. The class was limited to 30 students, I was really excited to be part of it. I met many excellent students there, some of whom I am still in touch with today.

When I started the course, I immediately told myself, “Duckietown is a great thing. If all universities used Duckietown, this would be a better world.” I liked the class a lot, then I also had the opportunity of being a TA. The TAship was an important step because I learned more than during the course. One thing is to live the experience as a student who has to take exams, complete various projects, etc. You need a deeper understanding to organize an activity. You have to take care of all the details and foresee the parts of the exercise that can be harder or simpler for the students. This experience helped me a lot. For example, I did an internship in Zurich where we had to develop a software infrastructure for a drone, and I found myself thinking, “wow this can be done with Duckietown, we can use the same technologies.” I noticed that even in the industry, often we see the use of the same technologies and tools that you can learn about thanks to Duckietown. Of course, maybe a company has its own customized tools, probably well optimized for its products. Perhaps it uses some other specific tool but let’s say you already know more or less what these tools are about. You know because in Duckietown, you have already seen how a robotics system should work and the pieces it is composed of. Duckietown has given me a huge boost with the internship and my Master’s thesis at NASA JPL. Consider that my thesis was on a system of multi drones, so I used, for example, Docker as a tool to simulate the different agents. With Duckietown, I acquired technical knowledge that I used in many other projects, including work.

Do you still use it today?

The last project I did with Duckietown is DuckVision. I know we could have thought of a better name. With one of my Duckietowner friends, Trevor Phillips, we enhanced the Duckiebot perception pipeline with another camera, a stereocamera made by Luxonis and Open CV called OAKD (OpenCV AI Kit with depth). This sensor is not just a simple camera, but it also mounts a VPU, Visual Processing Unit. Namely, it can analyze and make inferences on the images that the camera acquires onboard. It can perform object detection and tracking, gesture recognition, semantic segmentation, etc. There are plenty of models freely available online that can run on the OAK-D. We have integrated this sensor in the Duckietown ecosystem, using a similar approach used in the MOOC “Self-Driving Cars with Duckietown”, we created a small series of tutorials where you can just plug the camera on the robot, run our Docker container and have fun! With this project, we passed the first phase of the OpenCV AI Competition 2021. The idea behind the project was to increase the Duckiebot understanding of the environment, by using the depth information, the robot can have a better representation of its surroundings and so, for example, a better knowledge of its position. Also, in our opinion, the OAK-D in Duckietown can boost the research in autonomous vehicles and perception.
I would like to add something about the use of Duckietown, I have seen this project both as a student and from behind the scenes and I really understood that by using this platform you really learn a lot of things that are useful not only in the academic field but can also be very useful in the working environment with the practical knowledge that is often difficult to acquire during school. And in this regard I thought then given my history, I am Sicilian but I studied in Milan and then I went to Zurich, I asked myself what can I bring as a contribution of my travels, so I thought about using Duckietown in some universities here in Sicily in the universities of Palermo and Messina. And also, at the Polytechnic of Milan, for example, they have already begun to use it and have participated in the AIDO and have also placed well, they ended up among the finalists, so there is a lot of interest in this project.

Did you receive a positive response every time you proposed Duckietown?

Yes, and then there is a huge enthusiasm on the part of the students. I spoke with student associations first, then with the professors etc. but when the students see Duckietown for the first time, they are always really enthusiastic about using it.

“There is something that captures you in some way, and then just opens up a world when you start to actually see how all the systems are implemented. This is the nice thing in my opinion, you can decide the level of complexity you want to achieve.”

Vincenzo Polizzi

The duck was a great idea!

Absolutely right! The duck was a great idea, yes. I like contrasts, you see a super simple friendly thing that hides a state-of-the-art robotics platform. Even in the students I saw this reaction, because the duck is the first thing you see, it looks like a game, something to play with, this is the first impact, then when you start you get curious. It captures you with simplicity and then you stay for the complexity.

Would you suggest Duckietown to friends and colleagues?

Sure! There is something that captures you and opens up a world when you start to see how all the systems are implemented. This is the nice thing in my opinion, you can decide the level of complexity you want to achieve. It’s a platform that looks like something to play with, a game or something, but in reality there is a huge potential, in terms of knowledge that everyone can acquire, it’s something that you can not easily find elsewhere. I also think it offers great support, such as educational material, exercises that are of high quality. You can learn a lot of different aspects of robotics, in my opinion. You can do control, you can do the machine learning part, perception . There’s really a world to explore. You can see everything there is about robotics. But you can also just focus on one aspect that maybe you’re more passionate about. So yes, I would recommend it because you can learn a lot, and as a student myself I would recommend it to my fellow colleagues.

Learn more about Duckietown

The Duckietown platform offers robotics and AI learning experiences.

Duckietown is modular, customizable and state-of-the-art. It is designed to teach, learn, and do research: from exploring the fundamentals of computer science and automation to pushing the boundaries of knowledge.

Tell us your story

Are you an instructor, learner, researcher or professional with a Duckietown story to tell? Reach out to us!


Join the AI Driving Olympics, 6th edition, starting now!

The 2021 AI Driving Olympics

Compete in the 2021 edition of the Artificial Intelligence Driving Olympics (AI-DO 6)!

The AI-DO serves to benchmark the state of the art of artificial intelligence in autonomous driving by providing standardized simulation and hardware environments for tasks related to multi-sensory perception and embodied AI.

Duckietown traditionally hosts AI-DO competitions biannually, with finals events held at machine learning and robotics conferences such as the International Conference on Robotics and Automation (ICRA) and the Neural Information Processing Systems (NeurIPS). 

AI-DO 6 will be in conjunction with NeurIPS 2021 and have three leagues: urban driving, advanced perception, and racing. The winter champions will be announced during NeurIPS 2021, on December 10, 2021!

Urban driving league

The urban driving league uses the Duckietown platform and presents several challenges, each of increasing complexity.

The goal in each challenge is to develop a robotic agent for driving Duckiebots “well”. Baseline implementations are provided to test different approaches. There are no constraints on how your agents are designed.

Each challenge adds a layer of complexity: intersections, other vehicles, pedestrians, etc. You can check out the existing challenges on the Duckietown challenges server.

AI-DO 2021 features four challenges: lane following (LF), lane following with intersections (LFI), lane following with vehicles (LFV) and lane following with vehicles and intersections, multi-body, with full information (LFVI-multi-full).

All challenges have a simulation and hardware component (🚙,💻), except for LFVI-multi-full, which is simulation (💻) only.

The first phase (until Nov. 7) is a practice one. Results do not count towards leaderboards.

The second phase (Nov. 8-30) is the live competition and results count towards official leaderboards. 

Selected submissions (that perform well enough in simulation) will be evaluated on hardware in Autolabs. The submissions scoring best in Autolabs will access the finals.

During the finals (Dec. 1-8) one additional submission is possible for each finalist, per challenge.

Winners (top 3) of the resulting leaderboard will be declared AI-DO 2021 winter champions and celebrated live during NeurIPS 2021. We require champions to submit a short video (2 mins) introducing themselves and describing their submission.

Winners are invited to join (not mandatory) the NeurIPS event, on December 10th, 2021, starting at 11.25 GMT (Zoom link will follow).   

Overview
🎯Goal: develop robotic agents for challenges of increasing complexity
🚙Robot: Duckiebot (DB21M/J)
👀Sensors: camera, wheel encoders
Schedule
🏖️Practice: Nov. 1-7
🚙Competition: Nov. 8-30
🏘️Finals: Dec. 1 – 8
🏆Winners: Dec. 10
Rules
🏖️Practice: unlimited non-competing submissions
🚙Competition: best in sim are evaluated on hardware in Autolabs
🏘️Finals: one additional submission for Autolabs
🏆Winners: 2 mins video submission description for NeurIPS 2021 event.

The challenges

Lane following 🚙 💻

LF – The most traditional of AI-DO challenges: have a Duckiebot navigate a road loop without intersection, pedestrians (duckies) nor other vehicles. The objective is to travel the longest path in a given time while staying in the lane, i.e., not committing driving infractions.

Current AI-DO leaderboards: LF-sim-validation, LF-sim-testing.

Previous AI-DO leaderboards: sim-validation, sim-testing, real-validation.

A DB21 Duckietown in a Duckietown equipped with Autolab infrastructure.

Lane following with intersections 🚙 💻

LFI – This challenge builds upon LF by increasing the complexity of the road network, now featuring 3 and/or 4-way intersections, defined according to the Duckietown appearance specifications. Traffic lights will not be present on the map. The objective is to drive the longest distance while not breaking the rules of the road, now more complex due to the presence of traffic signs.

Current AI-DO leaderboards: LFI-sim-validation, LFI-sim-testing.

Previous AI-DO leaderboards: sim-validation, sim-testing.

Duckiebot facing a lane following with intersections (LFI) challenge

Lane following with vehicles 🚙 💻

LFV – In this traditional AI-DO challenge, contestants seek to travel the longest path in a city without intersections nor pedestrians, but with other vehicles on the road. Non-playing vehicles (i.e., not running the user’s submitted agent) can be in the same and/or opposite lanes and have variable speed.

Current AI-DO leaderboards: LFV-sim-validation, LFV-sim-testing.

Previous AI-DO leaderboards: (LFV-multi variant): sim-validation, sim-testing, real-validation.

Lane following with vehicles and intersections (stateful) 💻

LFVI-multi-full – this debuting challenge brings together roads with intersections and other vehicles. The submitted agent is deployed on all Duckiebots on the map (-multi), and is provided with full information, i.e., the state of the other vehicles on the map (-full). This challenge is in simulation only.

Getting started

All you need to get started and participate in the AI-DO is a computer, a good internet connection, and the ambition to challenge your skills against the international community!  

We provide webinars, operation manuals, and baselines to get started.

May the duck be with you! 

Thank you to our generous sponsors!

EdTech awards 2021: Duckietown finalist in 3 categories!

Duckietown reaches the finals in the EdTech Awards 2021

The EdTech awards are the largest and most competitive recognition program in all of education technology.

The competition, led by the EdTech digest, recognizes the biggest names in edtech – and those who soon will be, by identifying all over the world the products, services and people that bet promote education through the use of technology, for the benefit of learners.

The 2021 edition has brought a big surprise to Duckietown, as it was nominated as a finalist in 3 different categories:

  • Cool Tool Award: as robotics (for learning, education) solution;

  • Cool Tool Award: as higher education solution;

  • Trendsetter Award: as a product or service setting a trend in education technologies.

Although a final is just a starting point, we are proud of the hard work done by the team in this particularly difficult year of pandemic and lockdowns, and grateful to you all for the incredible support, constructive feedback and contributions!

To the future, and beyond!

(hidden) Want to learn more about us?

AI-DO 5 leaderboard update

AI-DO 5 pre-finals update

With the fifth edition of the AI Driving Olympics finals day approaching, 1326 solutions submitted from 94 competitors in three challenges, it is time to glance over at the leaderboards

Leaderboards updates

This year’s challenges are lane following (LF), lane following with pedestrians (LFP) and lane following with other vehicles, multibody (LFV_multi). Learn more about the challenges here. Each submission can be sent to multiple challenges. Let’s look at some of the most promising or interesting submissions.

The Montréal menace

Raphael Jean at Mila / University of Montréal is a new entrant for this year. 

An interesting submission: submission #12962 

All of raph’s submissions.

The submissions from the cold

Team JetBrains from Saint Petersburg was a winner of previous editions of AI-DO. They have been dominating the leaderboards also this year.

Interesting submissions: submission #12905

All of JetBrains submissions: JBRRussia1. 

 

BME Conti

PhD student Robert Moni (BME-Conti) from Hungary. 

Interesting submissions: submission #12999 

All submissions: timur-BMEconti

 

Deadline for submissions

The deadline for submitting to the AI-DO 5 is 12am EST on Thursday, December 10th, 2020. The top three entries (more if time allows) in each simulation challenge will be evaluated on real robots and presented at the finals event at NeurIPS 2020, which happens at 5pm EST on Saturday, December 12.

AI-DO 5 Update

AI-DO 5 Update

AI-DO 5 is in full swing and we want to bring you some updates: better graphics, more maps, faster and more reliable backend and an improved GUI to submit to challenges! 

Challenges visualization

We updated the visualization. Now the evaluation produces videos with your name and evaluation number (as below).

Challenges updates

We fixed some of the bugs in the simulator regarding the visualization (“phantom robots” popping in and out). 

We updated the maps in the challenges to have more variety in the road network; we put more grass and trees to make the maps more joyful!

We have updated the maps with more trees and grass

Faster and more reliable backend

The server was getting slow given the number of submissions, and sometime the service was unavailable. We have revamped the server code and added some backend capacity to be more fault-tolerant. It is now much faster!

Thanks so much to the participants that helped us debug this problem!

We overhauled the server code to make it much faster!

More evaluators

We brought online many more CPU and GPU evaluators. We now encourage you to submit more often as we have a lot more capacity.

We have many more evaluators now!

Submit to testing challenges

We also remind you that the challenges on the front page are the validation challenges, in which everybody can see the output. However what counts for winning are the testing challenges!  

To do that you can use dts challenges submit with the –challenges option

Or, you can use a new way using the website that we just implemented, described below.

Submitting to other challenges

Step 1: Go to your user page, by clicking “login” and then going to “My Submissions”.

Step 2: In this page you will find your submissions grouped by “component”. 

Click the component icon as in the figure.

Step 3: The page will contain some buttons that allow you to submit to other challenges that you didn’t submit to yet.

Join the AI Driving Olympics, 5th edition, starting now!

Compete in the 5th AI Driving Olympics (AI-DO)

The 5th edition of the Artificial Intelligence Driving Olympics (AI-DO 5) has officially started!

The AI-DO serves to benchmark the state of the art of artificial intelligence in autonomous driving by providing standardized simulation and hardware environments for tasks related to multi-sensory perception and embodied AI.

Duckietown hosts AI-DO competitions biannually, with finals events held at machine learning and robotics conferences such as the International Conference on Robotics and Automation (ICRA) and the Neural Information Processing Systems (NeurIPS). 

 The AI-DO 5 will be in conjunction with NeurIPS 2020 and have two leagues: Urban Driving and Advanced Perception

Urban driving league challenges

This year’s Urban League includes a traditional AI-DO challenge (LF) and introduces two new ones (LFP, LFVM).

Lane Following (LF)

The most traditional of AI-DO challenges: have a Duckiebot navigate a road loop without intersection, pedestrians (duckies) or other vehicles. The objective is traveling the longest path in a given time while staying in the lane.

Lane following with Pedestrian (LFP)

The LFP challenge is new to AI-DO. It builds upon LF by introducing static obstacles (duckies) on the road. The objectives are the same as for lane following, but do not hit the duckies! 

Lane Following with Vehicles, multi-body (LFVM)

In this traditional AI-DO challenge, contestants seek to travel the longest path in a city without intersections nor pedestrians, but with other vehicles on the road. Except this year there’s a twist. In this year’s novel multi-body variant, all vehicles on the road are controlled by the submission.

Getting started: the webinars

We offer a short webinar series to guide contestants through the steps for participating: from running our baselines in simulation as well as deploying them on hardware. All webinars are 9 am EST and free!

Introduction

Learn about the Duckietown project and the Artificial Intelligence Driving Olympics.

  • Nov. 9, 2020
ROS baseline

How to run and build upon the “traditional” Robotic Operation System (ROS) baseline.

  • Nov. 11, 2020
Local development

On the workflow for developing and deploying to Duckiebots, for hardware-based testing.

  • Nov. 13, 2020
RL baseline

Learn how to use the Pytorch template for reinforcement learning approaches.

  • Nov. 16, 2020
IL baseline

Introduction to the Tensorflow template, use of logs and simulator for imitation learning.

  • Nov. 18, 2020

Advanced sensing league challenges

Previous AI-DO editions featured: detection, tracking and prediction challenges around the nuScenes dataset.

For the 5th iteration of AI-DO we have a brand new lidar segmentation challenge.

The challenge is based on the recently released lidar segmentation annotations for nuScenes and features an astonishing 1,400,000,000 lidar points annotated with one of 32 labels.

We hope that this new benchmark will help to push the boundaries in lidar segmentation. Please see https://www.nuscenes.org/lidar-segmentation for more details.

Furthermore, due to popular demand, we will organize the 3rd iteration of the nuScenes 3d detection challenge. Please see https://www.nuscenes.org/object-detection for more details.

AI-DO 5 Finals event

The AI-DO finals will be streamed LIVE during 2020 edition of the Neural Information Processing Systems (NeurIPS 2020) conference in December.

Learn more about the AI-DO here.

Thank you to our generous sponsors!

The Duckietown Foundation is grateful to its sponsors for supporting this fifth edition of the AI Driving Olympics!

IROS2020: Watch The Workshop on Benchmarking Progress in Autonomous Driving

What a start for IROS 2020 with the "Benchmarking Progress in Autonomous Driving" workshop!

The 2020 edition of the International Conference on Intelligent Robots and Systems (IROS) started great with the workshop on “Benchmarking Progress in Autonomous Driving”.

The workshop was held virtually on October 25th, 2020, using an engaging and concise format of a sequence of four 1.5-hour moderated round-table discussions (including an introduction) centered around 4 themes.

The discussions on the methods by which progress in autonomous driving is evaluated, benchmarked, and verified were exciting. Many thanks to all the panelists and the organizers!  

Here are the videos of the various sessions. 

Opening remarks

Theme 1: Assessing progress for the field of autonomous vehicles (AVs)

Moderator: Andrea Censi

Invited Panelists:

Theme 2: How to evaluate AV risk from the perspective of real world deployment (public acceptance, insurance, liability, …)?

Moderator: Jacopo Tani

Invited Panelists:

Theme 3: Best practices for AV benchmarking

Moderator: Liam Paull

Invited Panelists:

Theme 4: Do we need new paradigms for AV development?

Moderator: Matt Walter

Invited Panelists:

Closing remarks

You can find additional information about the workshop here.

The Workshop on Benchmarking Progress in Autonomous Driving at IROS 2020

The IROS 2020 Workshop on Benchmarking Autonomous Driving

Duckietown has also a science mission: to help develop technologies for reproducible benchmarking in robotics.  

The IROS 2020 Workshop on Benchmarking Autonomous Driving provides a platform to investigate and discuss the methods by which progress in autonomous driving is evaluated, benchmarked, and verified.

It is free to attend.

The workshop is structured into 4 panels around four themes. 

  1. Assessing Progress for the Field of Autonomous Driving
  2. How to evaluate AV risk from the perspective of real world deployment (public acceptance, insurance, liability, …)?
  3. Best practices for AV benchmarking
  4. Algorithms and Paradigms

The workshop will take place on Oct. 25, 2020 starting at 10am EDT

Invited Panelists

We have  a list of excellent invited panelists from academia, industry, and regulatory organizations. These include: 

  • Emilio Frazzoli (ETH Zürich / Motional)
  • Alex Kendall (Wayve)
  • Jane Lappin (National Academy of Sciences)
  • Bryant Walker Smith (USC Faculty of Law)
  • Luigi Di Lillo (Swiss Re Insurance), 
  • John Leonard (MIT)
  • Fabio Bonsignorio (Heron Robots)
  • Michael Milford (QUT)
  • Oscar Beijbom (Motional)
  • Raquel Urtasun (University of Toronto / Uber ATG). 

Please join us...

Please join us on October 25, 2020 starting at 10am EST for what should be a very engaging conversation about the difficult issues around benchmarking progress in autonomous vehicles.  

For full details about the event please see here.

Round 3 of the the AI Driving Olympics is underway!

The AI Driving Olympics (AI-DO) is back!

We are excited to announce the launch of the AI-DO 3, which will culminate in a live competition event to be held at NeurIPS this Dec. 13-14.

The AI-DO is a global robotics competition that comprises a series of events based on autonomous driving. This year there are three events, urban (Duckietown), advanced perception (nuScenes), and racing (AWS Deepracer).  The objective of the AI-DO is to engage people from around the world in friendly competition, while simultaneously benchmarking and advancing the field of robotics and AI. 

Check out our official press release.

  • Learn more about the AI-DO competition here.

If you've already joined the competition we want to hear from you! 

 Share your pictures on facebook and twitter

Duckietown Workshop at RoboCup Junior

Duckietown Workshop at RoboCup Junior

In collaboration with the RoboCup Federation, the Duckietown Foundation will be offering workshops at RoboCup 2019 in Sydney, Australia, providing a hands-on introduction to the Duckietown platform.

We will be hosting three one-day workshops as part of RoboCup 2019 from July 4-6, 2019  for teachers, students, and independent learners who are interested in finding out more about the Duckietown platform. Attendance is completely free and everyone is welcome to apply, even if you are not participating in RoboCup. There are no formal requirements, though basic familiarity with GNU/Linux and shell usage is recommended. 

If you would like to apply to attend a workshop, please complete this form

We will have Duckiebots and Duckietowns for participants to use. However, you are more than welcome to bring your own Duckiebots, available for purchase at https://get.duckietown.org