Join the AI Driving Olympics, 5th edition, starting now!

Compete in the 5th AI Driving Olympics (AI-DO)

The 5th edition of the Artificial Intelligence Driving Olympics (AI-DO 5) has officially started!

The AI-DO serves to benchmark the state of the art of artificial intelligence in autonomous driving by providing standardized simulation and hardware environments for tasks related to multi-sensory perception and embodied AI.

Duckietown hosts AI-DO competitions biannually, with finals events held at machine learning and robotics conferences such as the International Conference on Robotics and Automation (ICRA) and the Neural Information Processing Systems (NeurIPS). 

 The AI-DO 5 will be in conjunction with NeurIPS 2020 and have two leagues: Urban Driving and Advanced Perception

Urban driving league challenges

This year’s Urban League includes a traditional AI-DO challenge (LF) and introduces two new ones (LFP, LFVM).

Lane Following (LF)

The most traditional of AI-DO challenges: have a Duckiebot navigate a road loop without intersection, pedestrians (duckies) or other vehicles. The objective is traveling the longest path in a given time while staying in the lane.

Lane following with Pedestrian (LFP)

The LFP challenge is new to AI-DO. It builds upon LF by introducing static obstacles (duckies) on the road. The objectives are the same as for lane following, but do not hit the duckies! 

Lane Following with Vehicles, multi-body (LFVM)

In this traditional AI-DO challenge, contestants seek to travel the longest path in a city without intersections nor pedestrians, but with other vehicles on the road. Except this year there’s a twist. In this year’s novel multi-body variant, all vehicles on the road are controlled by the submission.

Getting started: the webinars

We offer a short webinar series to guide contestants through the steps for participating: from running our baselines in simulation as well as deploying them on hardware. All webinars are 9 am EST and free!


Learn about the Duckietown project and the Artificial Intelligence Driving Olympics.

  • Nov. 9, 2020

ROS baseline

How to run and build upon the “traditional” Robotic Operation System (ROS) baseline.

  • Nov. 11, 2020

Local development

On the workflow for developing and deploying to Duckiebots, for hardware-based testing.

  • Nov. 13, 2020

RL baseline

Learn how to use the Pytorch template for reinforcement learning approaches.

  • Nov. 16, 2020

IL baseline

Introduction to the Tensorflow template, use of logs and simulator for imitation learning.

  • Nov. 18, 2020

Advanced sensing league challenges

Previous AI-DO editions featured: detection, tracking and prediction challenges around the nuScenes dataset.

For the 5th iteration of AI-DO we have a brand new lidar segmentation challenge.

The challenge is based on the recently released lidar segmentation annotations for nuScenes and features an astonishing 1,400,000,000 lidar points annotated with one of 32 labels.

We hope that this new benchmark will help to push the boundaries in lidar segmentation. Please see for more details.

Furthermore, due to popular demand, we will organize the 3rd iteration of the nuScenes 3d detection challenge. Please see for more details.

AI-DO 5 Finals event

The AI-DO finals will be streamed LIVE during 2020 edition of the Neural Information Processing Systems (NeurIPS 2020) conference in December.

Learn more about the AI-DO here.

Thank you to our generous sponsors!

The Duckietown Foundation is grateful to its sponsors for supporting this fifth edition of the AI Driving Olympics!

Integrated Benchmarking and Design for Reproducible and Accessible Evaluation of Robotic Agents

Integrated Benchmarking and Design for Reproducible and Accessible Evaluation of Robotic Agents

Why is this important?

As robotics matures and increases in complexity, it is more necessary than ever that robot autonomy research be reproducible.

Compared to other sciences, there are specific challenges to benchmarking autonomy, such as the complexity of the software stacks, the variability of the hardware and the reliance on data-driven techniques, amongst others.

We describe a new concept for reproducible robotics research that integrates development and benchmarking, so that reproducibility is obtained by design from the beginning of the research/development processes.

We first provide the overall conceptual objectives to achieve this goal and then a concrete instance that we have built: the DUCKIENet.

The Duckietown Automated Laboratories (Autolabs)

One of the central components of this setup is the Duckietown Autolab (DTA), a remotely accessible standardized setup that is itself also relatively low-cost and reproducible.

DTAs include an off-the-shelf camera-based localization system. The accessibility of the hardware testing environment through enables experimental benchmarking that can be performed on a network of DTAs in different geographical locations.


When evaluating agents, careful definition of interfaces allows users to choose among local versus remote evaluation using simulation, logs, or remote automated hardware setups. The Decentralized Urban Collaborative Benchmarking Environment Network (DUCKIENet) is an instantiation of this design based on the Duckietown platform that provides an accessible and reproducible framework focused on autonomous vehicle fleets operating in model urban environments. 

The DUCKIENet enables users to develop and test a wide variety of different algorithms using available resources (simulator, logs, cloud evaluations, etc.), and then deploy their algorithms locally in simulation, locally on a robot, in a cloud-based simulation, or on a real robot in a remote lab. In each case, the submitter receives feedback and scores based on well-defined metrics.


We validate the system by analyzing the repeatability of experiments conducted using the infrastructure and show that there is low variance across different robot hardware and across different remote labs. We built DTAs at the Swiss Federal Institute of Technology in Zurich (ETHZ) and at the Toyota Technological Institute at Chicago (TTIC).


Our contention is that there is a need for stronger efforts towards reproducible research for robotics, and that to achieve this we need to consider the evaluation in equal terms as the algorithms themselves. In this fashion, we can obtain reproducibility by design through the research and development processes. Achieving this on a large-scale will contribute to a more systemic evaluation of robotics research and, in turn, increase the progress of development.

If you found this interesting, you might want to:

Robust Reinforcement Learning-based Autonomous Driving Agent for Simulation and Real World

Robust Reinforcement Learning-based Autonomous Driving Agent for Simulation and Real World

We asked Róbert Moni to tell us more about his recent work. Enjoy the read!

The author's perspective

Most of us, proud nerd community members, experience driving first time by the discrete actions taken on our keyboards. We believe that the harder we push the forward arrow (or the W-key), the car from the game will accelerate faster (sooo true 😊 ). Few of us believes that we can resolve this task with machine learning. Even fever of us believes that this can be done accurately and in a robust mode with a basic Deep Reinforcement Learning (DRL) method known as Deep Q-Learning Networks (DQN).

It turned to be true in the case of a Duckiebot, and even more, with some added computer vision techniques it was able to perform well both in simulation (where the training process was carried out) and real world.

The pipeline

The complete training pipeline carried out in the Duckietown-gym environment is visualized in the figure above and works as follows. First, the camera images go through several preprocessing steps:

  • resizing to a smaller resolution (60×80) for faster processing;
  • cropping the upper part of the image, which doesn’t contain useful information for the navigation;
  • segmenting important parts of the image based on their color (lane markings);
  • and normalizing the image;
  • finally a sequence is formed from the last 5 camera images, which will be the input of the Convolutional Neural Network (CNN) policy network (the agent itself).

The agent is trained in the simulator with the DQN algorithm based on a reward function that describes how accurately the robot follows the optimal curve. The output of the network is mapped to wheel speed commands.

The workings

The CNN was trained with the preprocessed images. The network was designed such that the inference can be performed real-time on a computer with limited resources (i.e. it has no dedicated GPU). The input of the network is a tensor with the shape of (40, 80, 15), which is the result of stacking five RGB images. The network consists of three convolutional layers, each followed by ReLU (nonlinearity function) and MaxPool (dimension reduction) operations.

The convolutional layers use 32, 32, 64 filters with size 3 × 3. The MaxPool layers use 2 × 2 filters. The convolutional layers are followed by fully connected layers with 128 and 3 outputs. The output of the last layer corresponds to the selected action. The output of the neural network (one of the three actions) is mapped to wheel speed commands; these actions correspond to turning left, turning right, or going straight, respectively.

Learn more

Our work was acknowledged and presented at the IEEE World Congress on Computational Intelligence 2020 conference. We plan to publish the source code after AI-DO5 competition. Our paper is available on, and

Check out our sim and real demo on Youtube performed at our Duckietown Robotarium put together at Budapest University of Technology and Economics. .

Community Spotlight: Arian Houshmand – Control Algorithms for Traffic

No one likes sitting in traffic – it is a waste of time and damaging to the environment. Thankfully researcher Arian Houshmand from Boston University CODES lab is on the case -and he’s using Duckietown to help solve the problem.

Control algorithms to improve traffic

by Arian Houshmand

Traffic congestion around the world is worsening, according to transport data firm INRIX. In the U.S. alone, Americans wasted an average of 97 hours in traffic in 2018 – that’s two precious weekends worth of time. Captivity in traffic also costs them nearly $87 billion in 2018, an average of $1,348 per driver. Clearly, the need for smart transportation is reaching a fervor, not only to alleviate the mental and financial state of drivers, but to address the significant economic toll on affected cities.

Fortunately, development of intelligent mobility technologies is advancing.  In an ongoing research project funded by the U.S. Department of Energy’s (DOE) Advanced Research Projects Agency-Energy (ARPA-E) NEXTCAR program, BU researchers in collaboration with researchers from University of Delaware, University of Michigan, Oak Ridge National Lab, and Bosch are developing technologies for Connected and Automated Vehicles (CAVs) to increase their fuel efficiency and as a bi-product reduce traffic congestion.


The goal of this project is to design control and optimization technologies that enable a plug-in hybrid electric vehicle (PHEV) to communicate with other cars and city infrastructure and act on that information. By providing cars with situational self-awareness, they will be able to efficiently calculate the best possible route, accelerate and decelerate as needed, and manage their powertrain. This is an important task toward advancing the vision to create an ‘Internet of Cars,’ in which connected and self-driving cars operate seamlessly with each other and traffic infrastructure, improving fuel efficiency and safety, and reducing traffic congestion and pollution.

Today’s commercially-available self-driving cars rely on costly sensors, specifically radar, camera, and LIDAR (light) to operate semi-autonomously. In the NEXTCAR project, BU researchers with project collaborators are looking to go beyond that by developing decision-making algorithms to improve the autonomous operation of a single hybrid vehicle as well as algorithms for communications between vehicles and their environment, enabling self-driving cars to cooperate and interact within their socio-cyber-physical environment.

Several different functions have been developed throughout this project including:

●      Eco-routing: Procedure of finding the optimal route for a vehicle to travel between two points, which utilizes the least amount of energy costs.

●      Eco-AND (Economical Arrival and Departure): An optimal control framework for approaching a traffic light without stopping at the intersection by having traffic light cycle time information.

●      CACC (Cooperative Adaptive Cruise Control): An extension of adaptive cruise control

(ACC) that by benefiting from vehicle to vehicle (V2V) communication increases the safety and energy efficiency by reducing headway.

In order to validate and test the developed technologies, researchers first use simulation environments to test the algorithms. After verifying through simulation, they implement the algorithms on Duckietown, and finally deploy them on real cars (Audi A3 e-tron) at the University of Michigan’s M-city (test track for self-driving cars).


We use Duckietown to train students on how to implement their algorithms on embedded systems and also as a means to demonstrate our developed technologies in action and in a live setting. Since most of our research focuses on Connected and Automated Vehicles (CAVs), we need to establish connections between individual Duckiebots and traffic lights. As a result, we created a platform for exchanging information and control commands between all the cars and traffic lights.

Online localization of Duckiebots is a challenging task, and is missing from the current framework. We relied on our external motion capture sensors (OptiTrack) to localize the robots.

Duckietown is a nice platform for performing experiments on autonomous robots since It is relatively simple to set up the town and Duckiebots. Moreover, the built in perception and lane keeping capabilities are very useful to kick off experiments quickly. Traffic lights and signs are also helpful to create different scenarios for testing algorithms in city-like scenarios.

What would make Duckietown even more useful in our application is feedback sensors for determining wheel rotational speed/position as it is difficult to correct for rotational speed errors of the wheels and a ROS node for exchanging information between robots and traffic lights for testing collaborative control algorithms. 

Interactive Learning with Corrective Feedback for Policies based on Deep Neural Networks

Authors: Rodrigo Pérez-DattariCarlos CeleminJavier Ruiz-del-SolarJens Kober

Deep Reinforcement Learning (DRL) has become a powerful strategy to solve complex decision making problems based on Deep Neural Networks (DNNs). However, it is highly data demanding, so unfeasible in physical systems for most applications. In this work, we approach an alternative Interactive Machine Learning (IML) strategy for training DNN policies based on human corrective feedback, with a method called Deep COACH (D-COACH). This approach not only takes advantage of the knowledge and insights of human teachers as well as the power of DNNs, but also has no need of a reward function (which sometimes implies the need of external perception for computing rewards). We combine Deep Learning with the COrrective Advice Communicated by Humans (COACH) framework, in which non-expert humans shape policies by correcting the agent’s actions during execution. The D-COACH framework has the potential to solve complex problems without much data or time required. Experimental results validated the efficiency of the framework in three different problems (two simulated, one with a real robot), with state spaces of low and high dimensions, showing the capacity to successfully learn policies for continuous action spaces like in the Car Racing and Cart-Pole problems faster than with DRL

International Symposium on Experimental Robotics (ISER 2018)